Ứng dụng mạng nơ-rôn SVM trong mô hình lai dự báo độ ẩm lớn nhất và nhỏ nhất trong ngày
Số 1(60) - 2018
Tạp chí Nghiên cứu khoa học Đại học Sao Đỏ

Dự báo độ ẩm môi trường trong ngày là một trong những bài toán không chỉ ở Việt Nam mà các quốc gia trên thế giới đang rất quan tâm tới. Bài toán dự báo trên có tính chất phụ thuộc nhiều vào điều kiện địa lý và mang tính khu vực. Do đó, tại từng khu vực và vùng miền khác nhau cần xác lập bộ thông số dữ liệu phù hợp cho quá trình dự báo. Trong bài báo này, đề xuất sử dụng mô hình lai, phối hợp máy học véc-tơ hỗ trợ SVM (Support Vector Machine) và mô hình khai triển theo phương pháp tuyến tính SVD (Singular Value Decomposition) để dự báo và ước lượng giá trị độ ẩm lớn nhất và nhỏ nhất trong ngày tại thành phố Hải Dương, Việt Nam. Bộ số liệu đầu vào là giá trị lớn nhất, nhỏ nhất của nhiệt độ, độ ẩm, tốc độ gió và giá trị trung bình của lượng mưa, số giờ nắng của các ngày trước đó. Chất lượng của giải pháp đề xuất được kiểm nghiệm trên bộ số liệu quan trắc thực tế (2191 ngày, từ 01/01/2010 đến 31/12/2015) ở thành phố Hải Dương, Việt Nam. Kết quả thực nghiệm cho sai số tuyệt đối trung bình 4,23%.

Dự báo; mô hình lai; máy véc-tơ đỡ; độ ẩm lớn nhất, nhỏ nhất trong ngày.

 

Các bài báo khác